精英家教网 > 高中数学 > 题目详情

对每一个正整数,设,则

等于                                                                (   )

   A.-1025       B.-1225     C.-1500        D.-2525

B

解析:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=
3
3
x
相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.
(Ⅰ)证明:{rn}为等比数列;
(Ⅱ)设r1=1,求数列{
n
rn
}
的前n项和.精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=
3
3
x
相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,以(λn,0)表示Cn的圆心,已知{rn}为递增数列.
(1)证明{rn}为等比数列(提示:
rn
λn
=sinθ
,其中θ为直线y=
3
3
x
的倾斜角);
(2)设r1=1,求数列{
n
rn
}
的前n项和Sn
(3)在(2)的条件下,若对任意的正整数n恒有不等式Sn
9
4
-
an
rn
成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年广东省中山一中高二上学期第二次月考理科数学卷 题型:解答题

是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.

(Ⅰ)证明:为等比数列;
(Ⅱ)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2010年广东省山一高二上学期第二次月考理科数学卷 题型:解答题

(14分). 设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.

(Ⅰ)证明:为等比数列;

(Ⅱ)设,求数列的前项和.

 

查看答案和解析>>

同步练习册答案