精英家教网 > 高中数学 > 题目详情
如图,在各棱长均为的三棱柱中,侧面底面

(1)求侧棱与平面所成角的正弦值的大小;
(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.
(1)(2)存在点,使.

试题分析:(1)首先根据几何体的性质建立空间直角坐标系,利用“侧棱与平面所成角,即是向量与平面的法向量所成锐角的余角”,借助向量夹角公式进行计算;(2)假设存在点P满足,设出其坐标,然后根据建立等量关系,确定P点坐标即可.
试题解析:(1)∵侧面底面,作于点,∴平面
,且各棱长都相等,∴.                                              2分

故以为坐标原点,建立如图所示的空间直角坐标系,则


.  4分
设平面的法向量为
   
解得.由
而侧棱与平面所成角,即是向量与平面的法向量所成锐角的余角,
∴侧棱与平面所成角的正弦值的大小为                 6分
(2)∵,而 

又∵,∴点的坐标为
假设存在点符合题意,则点的坐标可设为,∴
为平面的法向量,
∴由,得.             10分
平面,故存在点
使,其坐标为
即恰好为点.                  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧棱底面

(1)证明:平面
(2)若是棱的中点,在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(即侧棱与底面垂直的三棱柱)中,的中点
(I)求证:平面平面
(II)求到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于异面直线的定义,下列说法中正确的是(    )
A.平面内的一条直线和这平面外的一条直线
B.分别在不同平面内的两条直线
C.不在同一个平面内的两条直线
D.不同在任何一个平面内的两条直线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正四棱柱中,分别是的中点,的中点,点在四边形上或其内部运动,且使,对于下列命题:①点可以与点重合;②点可以与点重合;③点可以在线段上;④点可以与点重合.
其中正确命题的序号是            (把你认为正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形中,为线段的中点,将沿折起,使平面⊥平面,得到几何体.

(1)若分别为线段的中点,求证:∥平面
(2)求证:⊥平面
(3)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列四个命题中,正确命题的个数是(   )
①若   ②若
③若  ④若
A.3个B.2个C.1个D.0个

查看答案和解析>>

同步练习册答案