精英家教网 > 高中数学 > 题目详情
(a是常数).
(1)求f (x)的表达式;
(2)如果f (x)是偶函数,求a的值;
(3)当f (x)是偶函数时,讨论函数f (x)在区间(0,+∞)上的单调性,并加以证明.
【答案】分析:(1) 令t=log2x,则x=2t,代入解析式换元即可求出外层函数的解析式;
(2)f (x)是偶函数,则可得到方程f (-x)=f (x)由此解方程即可求a,求解时要注意恒成立怎么转化.
(3)由(2)得到的解析式进行讨论,设0<x1<x2,研究f(x2)-f(x1)差的符号,进而判断出其单调性,做本题时要注意做题的格式,先判断再证明
解答:解:(1)令t=log2x,则x=2t,于是
(3分)
(2)∵f(x)是偶函数,∴对任意x∈R恒成立
对任意x∈R恒成立
∴a-1=0,即a=(16分)
(3)f (x)是偶函数时,讨论函数f (x)在区间(0,+∞)上是增函数,
证明如下
,设0<x1<x2,则(8分)
∵x1<x2,且y=2x是增函数,∴,即
∵0<x1<x2,x1+x2>0,∴(10分)

∴f(x2)-f(x1)>0,即f(x2)>f(x1
∴当x∈(0,+∞)时,f(x)是增函数.(12分)
点评:本题考查换元法求外层函数的解析式以及通过函数的奇偶性建立方程求参数,用函数单调性的定义证明函数的单调性,本题涉及面广,知识点多,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(log2x)=x+
ax
(a是常数).
(1)求f (x)的表达式;
(2)如果f (x)是偶函数,求a的值;
(3)当f (x)是偶函数时,讨论函数f (x)在区间(0,+∞)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(-x)=2-x+a•2x(a是常数).
(1)求f(x)的表达式;
(2)如果f(x)是偶函数,求a的值;
(3)当f(x)是偶函数时,讨论函数f(x)在区间(0,+∞)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省荆门市龙泉中学高三数学综合训练03(理科)(解析版) 题型:解答题

(a是常数).
(1)求f (x)的表达式;
(2)如果f (x)是偶函数,求a的值;
(3)当f (x)是偶函数时,讨论函数f (x)在区间(0,+∞)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省仙桃市沔州中学高三第一次考试数学试卷(文科)(解析版) 题型:解答题

(a是常数).
(1)求f (x)的表达式;
(2)如果f (x)是偶函数,求a的值;
(3)当f (x)是偶函数时,讨论函数f (x)在区间(0,+∞)上的单调性,并加以证明.

查看答案和解析>>

同步练习册答案