精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若2cosB•sinA=sinC,则△ABC一定是(  )三角形.
A.等腰B.直角C.等边D.等腰直角

分析 在△ABC中,总有A+B+C=π,利用此关系式将题中:“2cosB•sinA=sinC,”化去角C,最后得到关系另外两个角的关系,从而解决问题.

解答 解析:∵2cosB•sinA=sinC=sin(A+B)⇒sin(A-B)=0,
又B、A为三角形的内角,
∴A=B.
答案:A.

点评 本题主要考查三角函数的两角和与差的正弦函数,属于基础题,在判定三角形形状时,一般考虑两个方向进行变形,一个方向是边,走代数变形之路,另一个方向是角,走三角变换之路.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=$\frac{{x}^{2}-2x+3}{x}$(x<0)的最大值及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解不等式:|3x-2|-|x+1|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$\overrightarrow a$=(1,x),$\overrightarrow{b}$=(2,x-3),若当x=m时,$\overrightarrow{a}$∥$\overrightarrow{b}$,当x=n时,$\overrightarrow{a}$⊥$\overrightarrow{b}$.则m+n=(  )
A.-2B.-1C.0D.-2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=ax2在点(1,a)处的切线与直线x+y+5=0 平行,则a的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.己知i为虚数单位,则$\frac{i}{1+i}$=(  )
A.$\frac{1+i}{2}$B.$\frac{-1-i}{2}$C.$\frac{1-i}{2}$D.$\frac{-1+i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若(1-$\frac{1}{{x}^{2}}$)n(n∈N*,n>1)的展开式中x-4的系数为an,则$\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+…+\frac{1}{{a}_{n}}$为(  )
A.$\frac{n-1}{n}$B.$\frac{2n-2}{n}$C.$\frac{1-n}{n}$D.$\frac{2-2n}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合{x|(x+a)(x2+bx+c)=0}={1,2},求集合{x|(ax+1)(cx2+bx+1)=0}.

查看答案和解析>>

同步练习册答案