精英家教网 > 高中数学 > 题目详情
1.若函数y=k(x+1)的图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,则函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点的概率为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{\sqrt{3}-1}{2}$D.$\frac{\sqrt{3}+1}{4}$

分析 由题意画出约束条件的区域,计算函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点可能,利用几何概型公式解答.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,作出可行域如图,
直线y=k(x+1)过定点P(-1,0),
由图可知A(2,$\sqrt{3}$),B(0,$\sqrt{3}$),
则kPA=$\frac{\sqrt{3}}{3}$,kPB=$\sqrt{3}$,
∴$\frac{\sqrt{3}}{3}≤k≤\sqrt{3}$,
函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点,则$\frac{|k(4+1)-3|}{\sqrt{{k}^{2}+1}}$≤$\sqrt{2}$,解得$\frac{7}{23}$≤k≤1,
∵$\frac{\sqrt{3}}{3}≤k≤\sqrt{3}$,
∴$\frac{\sqrt{3}}{3}$≤k≤1,
∴函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点的概率为:$\frac{1-\frac{\sqrt{3}}{3}}{\sqrt{3}-\frac{\sqrt{3}}{3}}$=$\frac{\sqrt{3}-1}{2}$.
故选:C.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(x)为二次函数,f(x+1)=x2+4x+1,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x+m,g(x)=f(x-1)+m.
(1)若函数f(x)与g(x)的图象重合,求实数m的值;
(2)若函数f(x)与g(x)的图象都与圆x2+y2=1有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x2-1)=ln$\frac{x^2}{x^2-2}$,且f[φ(x)]=lnx,求φ(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的通项公式是an=2•3n-1+(-1)n(1n2-1n3)+(-1)nn1n3,求其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,切线CD、CB分别与⊙O相交于点D、B,AB为⊙O的直径,AE∥CD交BD于点E,若AB=BC,则sin∠BAE的值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求极坐标方程1+ρ2sin2φ=0所表示的曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2014年夏天,云南省鲁甸县发生6.5级地震,造成许多人员伤亡.某医院迅速组织了甲、乙两个医疗队到鲁甸县去抗震救灾.甲、乙两个医疗队的人员分布情况如表.鲁甸县的某乡村由于地理位置偏远,当地医疗人员少且医疗技术落后,故要利用分层抽样的方法在甲、乙两队中各选3名医生到该乡村帮助当地医疗人员救护受伤人员.
医疗队\性别男医生女医师
64
32
(1)求从甲队中抽取的医生中至少有1名是女医生的概率;
(2)记X表示抽取到男医生的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sinB=$\frac{2}{3}$,则∠B==2kπ+arcsin$\frac{2}{3}$ 或2kπ+π-arcsin$\frac{2}{3}$,k∈Z.

查看答案和解析>>

同步练习册答案