| A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{\sqrt{3}-1}{2}$ | D. | $\frac{\sqrt{3}+1}{4}$ |
分析 由题意画出约束条件的区域,计算函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点可能,利用几何概型公式解答.
解答
解:由约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,作出可行域如图,
直线y=k(x+1)过定点P(-1,0),
由图可知A(2,$\sqrt{3}$),B(0,$\sqrt{3}$),
则kPA=$\frac{\sqrt{3}}{3}$,kPB=$\sqrt{3}$,
∴$\frac{\sqrt{3}}{3}≤k≤\sqrt{3}$,
函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点,则$\frac{|k(4+1)-3|}{\sqrt{{k}^{2}+1}}$≤$\sqrt{2}$,解得$\frac{7}{23}$≤k≤1,
∵$\frac{\sqrt{3}}{3}≤k≤\sqrt{3}$,
∴$\frac{\sqrt{3}}{3}$≤k≤1,
∴函数y=k(x+1)的图象与圆(x-4)2+(y-3)2=2有公共点的概率为:$\frac{1-\frac{\sqrt{3}}{3}}{\sqrt{3}-\frac{\sqrt{3}}{3}}$=$\frac{\sqrt{3}-1}{2}$.
故选:C.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 医疗队\性别 | 男医生 | 女医师 |
| 甲 | 6 | 4 |
| 乙 | 3 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com