精英家教网 > 高中数学 > 题目详情
15.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-3,-2]上是减函数,若0≤x1≤x2≤1,试比较f(x1)与f(x2)的大小.

分析 由题意y=f(x)是定义在R上的偶函数,满足f(x+1)=-f(x),可以知道该函数的周期为2,确定函数在[0,1]上是增函数,即可得出结论.

解答 解:∵f(x+1)=-f(x),
∴f(x+2)=-f(x+1)=f(x),由函数的周期定义可知该函数的周期为2,
∵函数在[-3,-2]上是减函数,
∴函数在[-1,0]上是减函数,
∵函数是偶函数,
∴函数在[0,1]上是增函数,
∵0≤x1≤x2≤1,
∴f(x1)≤f(x2).

点评 本题考查了函数的周期性,对称性及有抽象函数式子赋值的方法,还考查了学生对于抽象问题的具体化及数形结合的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知α+β=7π,则sinα与sinβ的关系是sinα=sinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=x${\;}^{\frac{2}{3}}$的定义域为[0,+∞),值域为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=$\sqrt{tanx-1}$+lg(cosx-$\frac{1}{2}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{{x}^{2}}{2{x}^{2}-1}$,求f(-1),f(2),f(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线的中心在原点,两对称轴都在坐标轴上,且过P1(-2,$\frac{3\sqrt{5}}{2}$)和P2($\frac{4\sqrt{7}}{3}$,4)两点,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列三角函数值(可用计算器):
(1)sin(-$\frac{67}{12}$π);
(2)tan(-$\frac{15}{4}$π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知过点P(-3,1)的直线l与两坐标轴围成等腰三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,P是BC上一点,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{2}{11}$$\overrightarrow{AC}$,则实数m的值为(  )
A.$\frac{9}{11}$B.$\frac{5}{11}$C.$\frac{4}{11}$D.$\frac{3}{11}$

查看答案和解析>>

同步练习册答案