精英家教网 > 高中数学 > 题目详情
16.f(x)是定义域为R的偶函数,f′(x)为f(x)的导函数,当x≤0时,恒有f(x)+xf′(x)<0,设g(x)=xf(x),则满足g(2x-1)<g(3)的实数x的取值范围是(  )
A.(2,+∞)B.(-1,2)C.(-∞,-2)∪(2,+∞)D.(-∞,2)

分析 根据已知条件利用函数的单调性和奇偶性构造出新函数,利用xf′(x)+f(x)<0,得到:[xf(x)]′<0,进一步分析出偶函数的单调性在对称区间内单调性相反.故建立不等式,解出即可.

解答 解:定义在R上的偶函数f(x),
所以:f(-x)=f(x)
由f(x)的导函数为f′(x),
当x∈(-∞,0]时,恒有xf′(x)+f(x)<0
即:[xf(x)]′<0
所以:函数F(x)=xf(x)在(-∞,0)上是单调递减函数.
由于f(x)为偶函数,
令g(x)=xf(x),
则:g(x)为奇函数.
所以函数g(x)=xf(x)在(0,+∞)上是单调递减函数.
则:满足g(3)>g(2x-1)满足的条件是:2x-1<3,解得:x<2,
所以x的范围是:(-∞,2)
故选:D.

点评 本题考查的知识要点:函数的性质的应用,单调性和奇偶性的应用,构造性函数解不等式组.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),且f(f(x))=16x+5
(1)求f(x)的解析式;
(2)若g(x)在(1,+∞)上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个焦点与抛物线y2=4x的焦点重合,则双曲线的离心率等于$\sqrt{5}$,则该双曲线的方程为$\frac{{x}^{2}}{\frac{1}{5}}-\frac{{y}^{2}}{\frac{4}{5}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,足球门左右门柱分别立在A、B处,假定足球门宽度AB为7米,在距离右门柱15米的C处,一球员带球沿与球门线AC成28°角的CD方向以平均每秒6.5米的速度推进,2秒后到达D处射门.问:
(1)D点到左右门柱的距离分别为多少米?
(2)此时射门张角θ为多少?(注:cos28°≈$\frac{23}{26}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2x(4-x).
(I)若函数f(x)在区间(m,m+1)上单调递增,求实数m的取值范围;
(Ⅱ)如果函数f(x)在区间[n,m]上的值域是[log2(n+2),log2(m+2)],试求实数m的值;
(Ⅲ)如果函数f(x)在区间(0,m]上的值域是(-∞,log2(λm2].求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求抛物线y2=2x上的点P到定点($\frac{2}{3}$,0)距离的最小值,并求出取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-alnx(a∈R).
(1)求函数h(x)=f(x)+$\frac{1+a}{x}$的单调区间;
(2)若g(x)=-$\frac{1+a}{x}$在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图.四棱锥P-ABCD,ABCD为矩形,E,F分别为AB,PC的中点,证明:EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC三个顶点的坐标分别为A(-2,3),B(1,2),C(5,4),求:
(1)向量$\overrightarrow{BA}$与向量$\overrightarrow{BC}$的坐标;
(2)角B的大小.

查看答案和解析>>

同步练习册答案