精英家教网 > 高中数学 > 题目详情
已知椭圆4x2+y2=1及直线y=x+m.
(1)当m为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为
2
10
5
,求直线的方程.
分析:(1)将直线的方程y=x+m与椭圆的方程4x2+y2=1联立,得到5x2+2mx+m2-1=0,利用△=-16m2+20≥0即可求得m的取值范围;
(2)利用两点间的距离公式,再借助于韦达定理即可得到:两交点AB之间的距离∴|AB|=
(x2-x12+(y2-y12
=
(1+k2)[(x1+x2)2-4x1x2]
=
2[(-
2m
5
)
2
-4
m2-1
5
]
=
2
10
5
,从而可求得m的值.
解答:解:(1)把直线y=x+m代入椭圆方程得:4x2+(x+m)2=1
即:5x2+2mx+m2-1=0,
△=(2m)2-4×5×(m2-1)=-16m2+20≥0
解得:-
5
2
≤m≤
5
2

(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+2mx+m2-1=0的两根,由韦达定理可得:x1+x2=-
2m
5
x1x2=
m2-1
5

∴|AB|=
(x2-x12+(y2-y12
=
(x2-x1)2[1+(
y2-y1
x2-x1
2
]

=
(1+k2)[(x1+x2)2-4x1x2]
=
2[(-
2m
5
)
2
-4
m2-1
5
]
=
2
10
5

∴m=0.
∴直线的方程为y=x.
点评:本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆4x2+y2=1及直线y=x+m.
(1)当直线与椭圆有公共点时,求实数m的取值范围.
(2)求被椭圆截得的最长弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆4x2+y2=1及直线y=x+m
(1)m为何值时,直线与椭圆有公共点?
(2)求直线被椭圆截得的最长弦所在的直线方程,并求弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆4x2+y2=1及直线l:y=x+m.
(Ⅰ)当m为何值时,直线l与椭圆有公共点?
(Ⅱ)若直线l被椭圆截得的线段长为
4
2
5
,求直线的方程.
(Ⅲ)若直线l与椭圆相交于A、B两点,是否存在m的值,使得
OA
OB
=0
?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆4x2+y2-8kx-4ky+8k2-4=0(k为参数),存在一条直线,使得此直线被这些椭圆截得的线段长都等于
5
,求直线方程
y=2x±2
y=2x±2

查看答案和解析>>

同步练习册答案