精英家教网 > 高中数学 > 题目详情
已知a=
π
2
0
(sinx+cosx)dx
,则二项式(a
x
-
1
x
)6
的展开式中含x2项的系数是______.
∵已知a=
π
2
0
(sinx+cosx)dx
=(sinx-cosx)
|
π
2
0
=2,
则二项式(a
x
-
1
x
)6
=(2
x
-
1
x
)
6
  的展开式的通项公式为 Tr+1=
Cr6
(2
x
)
6-r
•(-1)r(
x
)
-r
=(-1)r
 Cr6
 26-r
•x3-r
令3-r=2,解得 r=1,故展开式中含x2项的系数是 (-1)1
 C16
 26-1
=-192,
故答案为-192.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴、如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当△ABP的面积最大时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球O的表面积为20π,SC是球O的直径,A、B两点在球面上,且AB=BC=2,AC=2
3
,则三棱锥S-AOB的高为(  )

查看答案和解析>>

科目:高中数学 来源:2013届山东省济宁市高二上学期期末考试理科数学 题型:解答题

(本小题满分12分)

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.   

(1)求双曲线G的渐近线的方程;  

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.

 

 

查看答案和解析>>

科目:高中数学 来源:2013届吉林省高二上学期质量检测理科数学 题型:解答题

.已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.   

(1)求双曲线G的渐近线的方程;  

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.

 

查看答案和解析>>

同步练习册答案