精英家教网 > 高中数学 > 题目详情
设F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
4x±3y=0
4x±3y=0
分析:过F2点作F2Q⊥PF1于Q点,得△PF1F2中,PF2=F1F2=2c,高F2Q=2a,PQ=
1
2
PF1=c+a,利用勾股定理列式,解之得a与c的比值,从而得到
b
a
的值,得到该双曲线的渐近线方程.
解答:解:∵PF2=F1F2=2c,
∴根据双曲线的定义,得PF1=PF2+2a=2c+2a
过F2点作F2Q⊥PF1于Q点,则F2Q=2a,
等腰△PF1F2中,PQ=
1
2
PF1=c+a,
PF 22=PQ2+QF 22,即(2c)2=(c+a)2+(2a)2
解之得a=
3
5
c,可得b=
c2-a2
=
4
5
c
b
a
=
4
3
,得该双曲线的渐近线方程为y=±
4
3
x,即4x±3y=0
故答案为:4x±3y=0
点评:本题给出双曲线的焦点三角形是以焦距为一腰的等腰三角形,底边上的高等于实轴,求双曲线的渐近线方程.着重考查了双曲线的标准方程与简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,以线段F1F2为直径的圆交双曲线左支于A,B两点,且∠AF1B=120°,若双曲线的离心率介于整数k与k+1之间,则k=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)设F1,F2分别为双曲线
x2
a2
-
y2
b2
= 1
的左、右焦点,点P在双曲线的右支上,且|PF2|=|1FF2|,F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知A、B为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1
的公共顶点,P、Q分别为双曲线和椭圆上不同于A、B的动点,且
OP
OQ
(λ∈R,λ>1)
.设AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4
(1)求证:k1k2=
b2
a2

(2)求k1+k2+k3+k4的值;
(3)设F1、F2分别为双曲线和椭圆的右焦点,若PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆一模)设F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且点P的横坐标为
5
4
c(c为半焦距),则该双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐过线于M,N两点,且满足∠MAN=120°,则该双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案