精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=
35

(1)求证:BC⊥AC1
(2)若D是AB的中点,求证:AC1∥平面CDB1
分析:(1)证明BC⊥AC,BC⊥CC1,AC、CC1是平面ACC1A1内的两条相交直线,即可证明BC⊥平面ACC1A1,从而证明BC⊥AC1
(2)D是AB的中点,连接BC1交B1C于M,连接DM,证明DM∥AC1,即可证明AC1∥平面CDB1
解答:证明:(1)∵在△ABC中,AC=3,AB=5,
cos∠BAC=
3
5

∴BC2=AB2+AC2-2AB•AC•
cos∠BAC=25+9-2×5×3×
3
5
=16.
∴BC=4,∠ACB=90°,
∴BC⊥AC,
∵BC⊥CC1,AC∩CC1=C,
∴BC⊥平面ACC1A1
∵AC1?平面ACC1A1
∴BC⊥AC1
精英家教网
(2)连接BC1交B1C于M,则M为BC1的中点,
连接DM,则DM∥AC1
∵DM?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1
点评:本题考查直线与平面平行的判定,直线与直线的垂直,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案