精英家教网 > 高中数学 > 题目详情

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入的数据如下表:

x

x1

x2

x3

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

-2

0

(1)求x1,x2,x3的值及函数f(x)的表达式;

(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,求函数y=f(x)·g(x)在区间的最小值.

【答案】见解析

【解析】(1)由ω+φ=0,ω+φ=π可得ω=,φ=-

x1x2x3=2π可得x1,x2,x3

又Asin=2,∴A=2,

∴f(x)=2sin.

(2)函数f(x)=2sin的图象向左平移π个单位,得g(x)=2sin=2cos的图象,

∴y=f(x)g(x)=2sin·2cos=2sin.

∵x∈,∴x-

∴当x-=-,即x=时,y=f(x)·g(x)取得最小值-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某林区的森林蓄积量每年比上一年平均增长9.5%,要增长到原来的x需经过y则函数yf(x)的图像大致为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,曲线的参数方程为为参数,在以为极点,轴的正半轴为极轴的极坐标系中,射线,与各有一个交点,当时,这两个交点间的距离为2,当,这两个交点重合

1分别说明是什么曲线,并求出的值;

2设当时,的交点分别为,当的交点分别为,求四边形的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为.

(1)若出现故障的机器台数为,求的分布列;

(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?

(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点, 的中点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,且,求直线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若f(1)=0,求函数fx)的最大值;
(Ⅱ)令,讨论函数gx)的单调区间;
(Ⅲ)若a=2,正实数x1x2满足证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据四川省民政厅报告,2013年6月29日以来,四川省中东部出现强降雨天气过程,局地出现大暴雨.暴雨洪涝灾害已造成遂宁、德阳、绵阳等12市34县(市、区)244万人受灾,共造成直接经济损失85502.41万元.适逢暑假,小王在某小区调查了50户居民由于洪灾造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出频率分布直方图(如图).


(1)若先从损失超过6000元的居民中随机抽出2户进行调查,求这2户不在同一小组的概率;(2)洪灾过后小区居委会号召小区居民为洪灾重灾区捐款,小王调查的50户居民的捐款情况如表,在表格空白处填写正确的数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

P(K2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:临界值表参考公式:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面

1)求证: 平面

2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届广东省深圳市高三下学期第一次调研考试(一模)数学理】已知函数为自然对数的底数.

(1)求曲线处的切线方程;

(2)关于的不等式上恒成立,求实数的值;

(3)关于的方程有两个实根,求证:

查看答案和解析>>

同步练习册答案