精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点, 的中点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,且,求直线所在的直线方程.

【答案】(Ⅰ); (Ⅱ)的直线方程为.

【解析】试题分析:

(1)利用题意结合余弦定理首先求得a,c的值,然后利用a,b,c的关系求得b的值即可得到椭圆的标准方程;

(2)直线的斜率存在,利用点斜式设出直线方程,将其与椭圆方程联立,利用题意结合根与系数的关系得到关于实数k的方程,求解方程即可得到直线的斜率,然后求解直线方程即可.

试题解析:

(Ⅰ)由,得

因为

由余弦定理得

解得

∴椭圆的方程为

(Ⅱ)因为直线的斜率存在,设直线方程为

联立整理得

由韦达定理知

此时,又,则

,∴,得到

的直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.

(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;

(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?

(Ⅲ)根据已知条件完成下面列联表,并回答是否有85%的把握认为该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关

甲生产线

乙生产线

合计

合格品

不合格品

合计

附:(其中为样本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在R上的奇函数xyR都有f(xy)f(x)f(y)且当x>0f(x)<0f(1)2.

(1)求证:f(x)为奇函数;

(2)求证:f(x)R上的减函数;

(3)f(x)[24]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图,六棱锥PABCDEF的底面是正六边形,PA⊥平面ABCDEF.则下列结论不正确的是(  )

A. CD∥平面PAF

B. DF⊥平面PAF

C. CF∥平面PAB

D. CF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入的数据如下表:

x

x1

x2

x3

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

-2

0

(1)求x1,x2,x3的值及函数f(x)的表达式;

(2)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,求函数y=f(x)·g(x)在区间的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费需了解年宣传费 (单位:千元)对年销售量 (单位:t)和年利润 (单位:千元)的影响.对近8年的年宣传费和年销售量 (i128)数据作了初步处理得到右面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中

(1)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的年利润的关系为.根据(2)的结果回答下列问题:

①年宣传费=49时,年销售量及年利润的预报值是多少?

②年宣传费为何值时,年利润的预报值最大?

附:对于一组数据 其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;

(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与圆 交于M,N两点.

(Ⅰ)设线段MN的中点为P,求点P的轨迹方程;

(Ⅱ)若,求直线的方程.

查看答案和解析>>

同步练习册答案