精英家教网 > 高中数学 > 题目详情
(2011•黄州区模拟)在数学中“所有”一词,叫做全称量词,用符号“?”表示;“存在”一词,叫做存在量词,用符号“?”表示.设f(x)=
x2-3x+3
x-2
(x>2)
,g(x)=ax(a>1,x>2).
①若?x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为
[3,+∞)
[3,+∞)

②若?x1∈(2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为
(1,
3
)
(1,
3
)
分析:①利用条件求出函数f(x)的值域即可.
②要使对?x1∈(2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),等价于x∈(2,+∞)时f(x)的值域为g(x)值域的子集,
解答:解:①由f(x)=
x2-3x+3
x-2
=
(x-2)2+(x-2)+1
x-2
=(x-2)+
1
x-2
+1

因为x>2,所以由基本不等式得f(x)=(x-2)+
1
x-2
+1≥2
(x-2)?
1
x-2
+1=3

所以函数f(x)的值域是[3,+∞),所以要使?x0∈(2,+∞),使f(x0)=m成立,则m≥3,
即实数m的取值范围为[3,+∞).
②因为a>1,x>2,所以g(x)≥a2,由①知f(x)的值域是[3,+∞),
所以要使?x1∈(2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),
则有a2≤3,解得1<a≤
3
,即实数a的取值范围为(1,
3
].
故答案为:①[3,+∞),②(1,
3
].
点评:本题考查利用基本不等式求函数在闭区间上的最值、函数单调性的应用,考查恒成立问题,本题中对恒成立问题的等价转化是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江苏模拟)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄州区模拟)若集合A={x|
x
=
x2-2
,x∈R}
,B={1,m},若A⊆B,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁德模拟)已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的焦点为F1,F2,离心率为
2
2
,直线l:x+2y-2=0与x轴,y轴分别交于点A,B.
(Ⅰ)若点A是椭圆E的一个顶点,求椭圆E的方程;
(Ⅱ)若线段AB上存在点P满足|PF1+PF2|=2a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
则统计表中的a=
60
60
;p=
0.65
0.65

查看答案和解析>>

同步练习册答案