精英家教网 > 高中数学 > 题目详情

已知函数若存在函数使得恒成立,则称的一个“下界函数”.
(I) 如果函数为实数的一个“下界函数”,求的取值范围;
(Ⅱ)设函数 试问函数是否存在零点,若存在,求出零点个数;若不存在,请说明理由.

(I) (Ⅱ)函数不存在零点.

解析试题分析:(I)解法一:由 得          1分
                   2分
时, 所以上是减函数,
时, 所以上是增函数,     3分
因此 即                 5分
解法二:由 得 
                1分
(1)若
上是增函数,在上是减函数,          2分
因为恒成立,所以解得      3分
(2)若时,
此与恒成立矛盾,故舍去;               4分
综上得                            5分
(Ⅱ)解法一:函数
由(I)知                6分
                 7分
设函数
(1)当时,
上是减函数,在上是增函数,

因为 所以 即            8分
(2)当时,         9分
综上知 所以函数不存在零点.              10分
解法二:前同解法一,      7分
 则
所以上是减函数,在上是增函数,
因此             &nbs

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为
(1)求的值;
(2)求函数的单调递增区间,并求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若曲线处的切线互相平行,求的值及函数的单调区间;
(Ⅱ)设,若对任意,均存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求曲线在点处的切线方程;
(2)求的单调区间.
(3)设,如果过点可作曲线的三条切线,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设,试比较的大小;
(2)是否存在常数,使得对任意大于的自然数都成立?若存在,试求出的值并证明你的结论;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3-12x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.(其中为自然对数的底数).
(1)设曲线处的切线与直线垂直,求的值;
(2)若对于任意实数≥0,恒成立,试确定实数的取值范围;
(3)当时,是否存在实数,使曲线C:在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小值;
(2)设,讨论函数的单调性;
(3)斜率为的直线与曲线交于,两点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上为增函数,求实数的取值范围;
(2)当时,求上的最大值和最小值.

查看答案和解析>>

同步练习册答案