设函数f(x)=x3-12x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;
(1)f(x)的单调递增区间为(-∞,-2)和(2,+∞);单调减区间为(-2,2)当x=-2时,f(x)有极大值21;当x=2时,f(x)有极小值-11.
(2)
解析试题分析:解:(1)f′(x)=3x2-12,令f′(x)=0,解得x1=-2,x2=2. 2分
因为当x>2或x<-2时,f′(x)>0;当-2<x<2时,f′(x)<0.
所以f(x)的单调递增区间为(-∞,-2)和(2,+∞);单调减区间为(-2,2). 3分
当x=-2时,f(x)有极大值21;当x=2时,f(x)有极小值-11. 2分
(2)由(1)的分析知y=f(x)的图象的大致形状及走向,当-11<a<21时,直线y=a与y=f(x)的
图象有三个不同交点,即方程f(x)=a有三个不同的解. 2分
考点:导数的运用
点评:主要是考查了导数在研究函数中单调性和极值的运用,属于基础题。
科目:高中数学 来源: 题型:解答题
已知函数.
(Ⅰ)若在上的最大值为,求实数的值;
(Ⅱ)若对任意,都有恒成立,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数若存在函数使得恒成立,则称是的一个“下界函数”.
(I) 如果函数为实数为的一个“下界函数”,求的取值范围;
(Ⅱ)设函数 试问函数是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(1)求函数的单调区间和极值。
(2)若关于的方程有三个不同实根,求实数的取值范围;
(3)已知当(1,+∞)时,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数(,b∈Z),曲线在点(2,)处的切线方程为=3.
(1)求的解析式;
(2)证明:曲线=上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的导函数是,在处取得极值,且
,
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有
成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最
小值,据此判断与的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
文科(本小题满分14分)设函数。(Ⅰ)若函数在处与直线相切,①求实数,b的值;②求函数上的最大值;(Ⅱ)当时,若不等式对所有的都成立,求实数m的取值范围。)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com