精英家教网 > 高中数学 > 题目详情

设函数,b∈Z),曲线在点(2,)处的切线方程为=3.
(1)求的解析式;
(2)证明:曲线=上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.

(1)f(x)=x+(2)2.

解析试题分析:(1)解  f′(x)=a-,于是解得
因为a,b∈Z,故f(x)=x+.(4分)
(2)证明 在曲线上任取一点(x0,x0+),
由f′(x0)=1-知,过此点的切线方程为y-=(x-x0).(6分)
令x=1,得y=,切线与直线x=1的交点为;
令y=x,得y=2x0-1,切线与直线y=x的交点为(2x0-1,2x0-1);
直线x=1与直线y=x的交点为(1,1),从而所围三角形的面积为
|2x0-1-1|=|2x0-2|=2.所以,所围三角形的面积为定值2.(10分)
考点:导数的几何意义,和三角形面积
点评:主要是考查了导数的几何意义求解切线方程,以及三角形的面积,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(其中).
(1)求的单调区间;
(2)若函数在区间上为增函数,求的取值范围;
(3)设函数,当时,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求曲线在点处的切线方程;
(2)求的单调区间.
(3)设,如果过点可作曲线的三条切线,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3-12x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.(其中为自然对数的底数).
(1)设曲线处的切线与直线垂直,求的值;
(2)若对于任意实数≥0,恒成立,试确定实数的取值范围;
(3)当时,是否存在实数,使曲线C:在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)当=1时,求在(1,)的切线方程
(Ⅱ)当时,,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小值;
(2)设,讨论函数的单调性;
(3)斜率为的直线与曲线交于,两点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算由曲线,直线x+y=3以及两坐标轴所围成的图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设函数.求函数的单调递减区间;
(2)证明函数上是增函数.

查看答案和解析>>

同步练习册答案