精英家教网 > 高中数学 > 题目详情

已知函数(其中).
(1)求的单调区间;
(2)若函数在区间上为增函数,求的取值范围;
(3)设函数,当时,若存在,对任意的,总有成立,求实数的取值范围.

(1)的单调增区间为,单调减区间为.
(2)
(3))

解析试题分析:解:(1)
,故.
时,;当时,.
的单调增区间为,单调减区间为.……3分
(2),则,由题意可知上恒成立,即上恒成立,因函数开口向上,且对称轴为,故上单调递增,因此只需使,解得
易知当时,且不恒为0.
.……7分
(3)当时,,故在,即函数上单调递增,.……9分
而“存在,对任意的,总有成立”等价于“上的最大值不小于上的最大值”.
上的最大值为中的最大者,记为.
所以有
.
故实数的取值范围为.……13分
考点:导数的运用
点评:主要是考查了导数在研究函数中的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数 
(1) 当时,求函数的单调区间;
(2) 当时,求函数上的最小值和最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数,若.
(1)求的值并求曲线在点处的切线方程;
(2)设,求上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求在区间上的最大值;
(2)若函数在区间上存在递减区间,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


的单调区间
 两点连线的斜率为,问是否存在常数,且,当时有,当时有;若存在,求出,并证明之,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调递增区间;
(2)若处的切线与直线垂直,求证:对任意,都有
(3)若,对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.        
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的单调区间;
(2)若关于的方程在区间上有唯一实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,b∈Z),曲线在点(2,)处的切线方程为=3.
(1)求的解析式;
(2)证明:曲线=上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

同步练习册答案