精英家教网 > 高中数学 > 题目详情

已知函数.        
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有,求实数的取值范围.

(1)当时,取得最小值. (2)的取值范围是

解析试题分析:(1)的定义域为,  1分  
的导数.    2分
,解得;令,解得.
从而单调递减,在单调递增.    4分
所以,当时,取得最小值.         6分
(2)依题意,得上恒成立,
即不等式对于恒成立 .   
,  则.   8分
时,因为,  
上的增函数,  所以 的最小值是,  10分
所以的取值范围是.    12分
考点:应用导数研究函数的单调性、最值,不等式恒成立问题。
点评:中档题,本题属于导数应用中的常见问题,通过研究函数的单调性,明确最值情况。涉及不等式恒成立问题,往往通过构造函数,研究函数的最值,得到确定参数(范围)的目的。对数函数要注意其真数大于0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为
(1)求的值;
(2)求函数的单调递增区间,并求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中).
(1)求的单调区间;
(2)若函数在区间上为增函数,求的取值范围;
(3)设函数,当时,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在x=与x =l时都取得极值
(1)求a、b的值与函数f(x)的单调区间
(2)若对x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若曲线处的切线互相平行,求的值及函数的单调区间;
(Ⅱ)设,若对任意,均存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求曲线在点处的切线方程;
(2)求的单调区间.
(3)设,如果过点可作曲线的三条切线,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小值;
(2)设,讨论函数的单调性;
(3)斜率为的直线与曲线交于,两点,求证:

查看答案和解析>>

同步练习册答案