精英家教网 > 高中数学 > 题目详情

已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间

(1);(2)单调递增区间为

解析试题分析:(1)的图象经过点,则,         2分
          4分
切点为,则的图象经过点
           6分
(2)
单调递增区间为            12分
考点:导数的几何意义,直线方程,利用导数研究函数的单调性。
点评:中档题,切线的斜率,等于在切点的导函数值。在某区间,导数非负,函数为增函数,导数非正,函数为减函数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若时,关于的方程有唯一解,求的值;
(3)当时,证明: 对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求在区间上的最大值;
(2)若函数在区间上存在递减区间,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调递增区间;
(2)若处的切线与直线垂直,求证:对任意,都有
(3)若,对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.        
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的图像在处的切线方程;
(Ⅱ)设实数,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的单调区间;
(2)若关于的方程在区间上有唯一实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上的最大值为,求实数的值;
(Ⅱ)若对任意,都有恒成立,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数是处取得极值,且

(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有
成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最
小值,据此判断的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案