精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)求函数的图像在处的切线方程;
(Ⅱ)设实数,求函数上的最小值.

(1),(2)

解析试题分析:(1)定义域为     又
函数的在处的切线方程为:,即
(2)    当单调递减,当单调递增.
(i)当时,单调递增,
(ii)当时, 
(iii)当时,单调递减,
考点:导数的几何意义,直线方程,利用导数研究函数的极值(最值)。
点评:典型题,切线的斜率,等于在切点的导函数值。利用导数研究函数的极值,一般遵循“求导数、求驻点、研究导数的正负、确定极值”,利用“表解法”,清晰易懂。为研究函数的极值,就参数的范围进行讨论,易于出错。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
⑴求函数的单调区间;
⑵记函数,当时,上有且只有一个极值点,求实数的取值范围;
⑶记函数,证明:存在一条过原点的直线的图象有两个切点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
(I)求a的值
(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线处的切线互相平行,求的值;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的导数满足,其中
求曲线在点处的切线方程;
,求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中的导函数.证明:对任意.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知时有极大值6,在时有极小值,求a,b,c的值;并求区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中常数
(1)求的单调区间;
(2)如果函数在公共定义域D上,满足,那么就称 为的“和谐函数”.设,求证:当时,在区间上,函数的“和谐函数”有无穷多个.

查看答案和解析>>

同步练习册答案