精英家教网 > 高中数学 > 题目详情

计算由曲线,直线x+y=3以及两坐标轴所围成的图形的面积S.

 

解析试题分析:解:如图,由与直线x+y=3在点(1,2)相交,      2分
直线x+y=3与x轴交于点(3,0)      4分
所以,所求围成的图形的面积 ,其中被积函数f(x)    8分
  13分
所以,所求围成的图形的面积为      14分
考点:定积分
点评:解决的关键是根据微积分基本定理和图像的交点来得到定积分的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)求的单调区间;
(2)若关于的方程在区间上有唯一实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,b∈Z),曲线在点(2,)处的切线方程为=3.
(1)求的解析式;
(2)证明:曲线=上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数是处取得极值,且

(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有
成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最
小值,据此判断的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若函数有极值,求的值;
(2)若函数在区间上为增函数,求的取值范围;
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数在上的最大值和最小值;
(2)讨论函数的单调性;
(3)若函数处取得极值,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ) 若存在实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

文科(本小题满分14分)设函数。(Ⅰ)若函数处与直线相切,①求实数,b的值;②求函数上的最大值;(Ⅱ)当时,若不等式对所有的都成立,求实数m的取值范围。)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数 
(1)当时,求证:
(2)在区间恒成立,求实数的范围。
(3)当时,求证:

查看答案和解析>>

同步练习册答案