精英家教网 > 高中数学 > 题目详情
已知(1+i)(1-mi)=2i(i是虚数单位),则实数m的值为(  )
A、±1B、1C、2D、-1
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:由复数代数形式的乘除运算化简等式左边为a+bi(a,b∈R)的形式,再由复数相等的条件列式求得实数m的值.
解答: 解:∵(1+i)(1-mi)=1-mi+i-mi2=(1+m)+(1-m)i,
由(1+i)(1-mi)=2i,
1+m=0
1-m=2

解得m=-1.
故选:D.
点评:本题考查了复数代数形式的乘除运算,考查了复数相等的条件,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若
c2-a2
b2+ab
=1,则∠C的大小为(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若在△ABC中,有sin
C
2
=cosA,则△ABC一定是(  )
A、锐角三角形
B、钝角三角形
C、直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意x∈[-1,0],恒有
1
3
x3-x2
-3x-2m≤3成立,则m的取值范围为(  )
A、[-
2
3
,+∞)
B、[-1,+∞)
C、[-
4
3
,+∞)
D、[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面向量
a
b
c
均为非零向量,则“
a
•(
b
-
c
)=0”是“
b
=
c
”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:各项均为正数的数列{an}的前n项和为Sn,且对任意正整数n,点(an,Sn)都在直线2x-y-
1
2
=0上.
(1)求数列{an}的通项公式.
(2)(附加题)若an2=2-b,设Cn=
bn
an
  求:数列{Cn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校在一次运动会上,将要进行甲、乙两名同学的乒乓球冠亚军决赛,比赛实行三局两胜制.已知每局比赛中,若甲先发球,其获胜的概率为
2
3
,否则其获胜的概率为
1
2

(Ⅰ)若在第一局比赛中采用掷硬币的方式决定谁先发球,试求甲在此局获胜的概率;
(Ⅱ)若第一局由乙先发球,以后每局由负方先发球.规定胜一局记2分,负一局记0分,记ξ为比赛结束时甲的得分,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥面ABCD,BC∥AD,CD=1,AD=2
2
,∠BAD=∠CDA=45°.
(1)求证:CD⊥面ABF;
(2)试在棱DE上找一点P使得二面角B-AP-D的正切值为
5
,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两边b、c是方程x2-kx+40=0的两根,△ABC的面积是10
3
,周长是20,试求∠A和k的值.

查看答案和解析>>

同步练习册答案