精英家教网 > 高中数学 > 题目详情
(2012•黄浦区二模)已知函数f(x)=|x2-2ax+a|(x∈R),给出下列四个命题:
①当且仅当a=0时,f(x)是偶函数;
②函数f(x)一定存在零点;
③函数在区间(-∞,a]上单调递减;
④当0<a<1时,函数f(x)的最小值为a-a2
那么所有真命题的序号是
①④
①④
分析:(1)当f(x)是偶函数时,函数解析式中不能含有奇数次项;
(2)二次函数的零点是函数与X轴交点的横坐标,举个反例即可;
(3)分段函数单调性要根据每段函数解析式来求,举个反例即可;
(4)当0<a<1时,函数f(x)=|x2-2ax+a|=x2-2ax+a>0恒成立,此时函数f(x)的最小值为a-a2
解答:解:由于函数f(x)=|x2-2ax+a|(x∈R),
①当a=0时,f(x)=x2,则f(x)是偶函数;
当f(x)是偶函数时,函数解析式中不能含有奇数次项,则-2a=0,即a=0.
故①为真命题.
②∵△=4a2-4a=4a(a-1),当0<a<1时,△<0,函数f(x)=|x2-2ax+a|=x2-2ax+a>0恒成立,
此时函数f(x)不存在零点,∴②是假命题.
③由于函数f(x)=x2-2ax+a在区间(-∞,a]上单调递减,
但函数f(x)=|x2-2ax+a|(x∈R)是由函数f(x)=x2-2ax+a把X轴下方图象沿X轴旋转180度得到的,
则函数f(x)=|x2-2ax+a|(x∈R)在区间(-∞,a]上单调递减不一定成立.
故③是假命题.
④当0<a<1时,函数f(x)=|x2-2ax+a|=x2-2ax+a>0恒成立,此时函数f(x)的最小值为a-a2
故④是真命题.
故答案为①④.
点评:本题考查的知识点是,判断命题真假,比较综合的考查了二次函数和分段函数的一些性质,我们可以根据函数的性质对四个结论逐一进行判断,可以得到正确的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,则cos2α=
63
65
63
65

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)函数f(x)=log
1
2
(2x+1)
的定义域为
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步练习册答案