精英家教网 > 高中数学 > 题目详情

垂直于正方形所在的平面,,异面直线所成的角的余弦为

(1)求的长;

(2)在平面内求一点(指出其位置),使

(1)2(2)F是AD中点


解析:

(1)以DA、DC、DP所在直线分别为建立空间直角坐标系

(2)

    

    

     又

     即F是AD中点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2004•朝阳区一模)如图,已知PA垂直于正方形ABCD所在的平面,E、F分别为AB、PD的中点,过AE、AF的平面交PC于点H,二面角P-CD-B为45°,PA=a.
(Ⅰ)求证:AF∥EH;
(Ⅱ)求证:平面PCE⊥平面PCD; 
(Ⅲ)求多面体ECDAHF的体积.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市高三起点考试理科数学卷 题型:解答题

(本小题满分12分)

   如右图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,圆O的直径为9。

   (1)求证:平面ABCD平在ADE;

   (2)求二面角D—BC—E的平面角的正切值;

                                

 

查看答案和解析>>

科目:高中数学 来源:朝阳区一模 题型:解答题

如图,已知PA垂直于正方形ABCD所在的平面,E、F分别为AB、PD的中点,过AE、AF的平面交PC于点H,二面角P-CD-B为45°,PA=a.
(Ⅰ)求证:AFEH;
(Ⅱ)求证:平面PCE⊥平面PCD; 
(Ⅲ)求多面体ECDAHF的体积.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2004年北京市朝阳区高考数学一模试卷(文科)(解析版) 题型:解答题

如图,已知PA垂直于正方形ABCD所在的平面,E、F分别为AB、PD的中点,过AE、AF的平面交PC于点H,二面角P-CD-B为45°,PA=a.
(Ⅰ)求证:AF∥EH;
(Ⅱ)求证:平面PCE⊥平面PCD; 
(Ⅲ)求多面体ECDAHF的体积.

查看答案和解析>>

同步练习册答案