精英家教网 > 高中数学 > 题目详情
如图所示,S是边长为a的正△ABC所在平面外一点,SA=SB=SC=a,EF分别是SCAB的中点.

(1)求异面直线SCAB的距离;

(2)求异面直线SAEF所成的角.

解析:(1)连结SFCF,?

∵△SAB、△CAB是正三角形,∴SF=CF=a,且SFBCFAB.?

SFCF=F,∴AB⊥面SFC.?

ABEFF.?

SF=CF,∴△FSC是等腰三角形.?

ESC中点,∴FESCE.?

EFSCAB的公垂线段.?

在Rt△SEF中,SF=a,SE=a,?

∴由勾股定理可知EF=.?

因此,异面直线SCAB的距离为.?

(2)取AC中点M,连结EMFM.?

EFM分别为SCABCA中点,?

EMSAFMCB,?

EM=SAFM=CB.?

EM=FM=12a.?

∴∠MEFSAEF所成的角或其补角.?

EM=FM=a,EF=a,?

EF2=FM2+EM2,即FMEM.?

∴△EMF是等腰直角三角形.?

∴∠MFE=45°,即SAEF所成的角是45°.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

请你设计一个纸盒.如图所示,ABCDEF是边长为30cm的正六边形硬纸片,切去阴影部分所示的六个全等的四边形,再沿虚线折起,正好形成一个无盖的正六棱柱形状的纸盒,G、H分别在AB、AF上,是被切去的一个四边形的两个顶点,设AG=AH=x(cm).(1)若要求纸盒的侧面积S(cm2)最大,试问x应取何值?
(2)若要求纸盒的容积V(cm3)最大,试问x应取何值?并求此时纸盒的高与底面边长的比.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省威海四中高二(下)期中数学试卷(文科)(解析版) 题型:解答题

请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

科目:高中数学 来源:2011-2012年学广东省梅州市东山中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

同步练习册答案