精英家教网 > 高中数学 > 题目详情
16.已知a=log0.65,b=2${\;}^{\frac{4}{5}}$,c=sin1,将a,b,c按从小到大的顺序用不等号“<”连接为a<c<b.

分析 利用对数函数、指数函数、正弦函数的单调性求解.

解答 解:∵a=log0.65<log0.61=0,
b=2${\;}^{\frac{4}{5}}$>20=1,
0<c=sin1<1,
∴a<c<b.
故答案为:a<c<b.

点评 本题考查三个数的大小的判断,是基础题,解题时要认真审题,注意对数函数、指数函数、正弦函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.实数x,y满足不等式组$\left\{\begin{array}{l}{y≤3}\\{3x+7y-24≤0}\\{x+4y-8≥0}\end{array}\right.$,则z=|x|+|y|的最小值是(  )
A.8B.4C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x,y满足$\left\{\begin{array}{l}{x+y-2≤0}\\{2x+y-2≥0}\\{y≥0}\end{array}\right.$,则z=2x-y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)的定义域为R,且f(-3)=1,f'(x)>2,则不等式f(x)<2x+7的解集为(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-a(x-1),g(x)=ex,其中e为自然对数的底数.
(1)当a=1时,求函数y=f(x)的单调区间;
(2)求函数y=f(x)在区间[1,e]上的值域;
(3)若a>0,过原点分别作曲线y=f(x)、y=g(x)的切线l1、l2,且两切线的斜率互为倒数,求证:$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ln(a-$\frac{1}{x}$)(a∈R).若关于x的方程ln[(4-a)x+2a-5]-f(x)=0的解集中恰好有一个元素,则实数a的取值范围为(1,2]∪{3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等比数列{an}的公比q=2,前n项和为Sn,则$\frac{{S}_{4}}{{a}_{2}}$的值为(  )
A.$\frac{15}{4}$B.$\frac{15}{2}$C.$\frac{7}{4}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}{(2a-1)^x},(x≤1)\\(5-a)x+a,(x>1)\end{array}\right.$在(-∞,+∞)上是增函数,则实数a的取值范围是(  )
A.1<a<3B.1<a≤3C.$\frac{1}{2}$<a<5D.$\frac{1}{2}$<a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若方程$\sqrt{1-{x^2}}=a(x-2)$有两个不相等实数根,则实数a的取值范围是$(-\frac{{\sqrt{3}}}{3},0]$.

查看答案和解析>>

同步练习册答案