分析 根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.
解答 解:由ln[(4-a)x+2a-5]-f(x)=0,
得ln[( 4-a)x+2a-5]=ln(a-$\frac{1}{x}$),
即a-$\frac{1}{x}$=(4-a)x+2a-5>0,①
则(a-4)x2-(a-5)x-1=0,
即(x-1)[(a-4)x+1]=0,②,
当a=4时,方程②的解为x=1,代入①,成立;
当a=3时,方程②的解为x=1,代入①,成立;
当a≠4且a≠3时,方程②的解为x=1或x=-$\frac{1}{a-4}$,
若x=1是方程①的解,则a-$\frac{1}{x}$=a-1>0,即a>1,
若x=-$\frac{1}{a-4}$是方程①的解,则a-$\frac{1}{x}$=2a-4>0,即a>2,
则要使方程①有且仅有一个解,则1<a≤2.
综上,关于x的方程ln[(4-a)x+2a-5]-f(x)=0的解集中恰好有一个元素,
则a的取值范围是1<a≤2,或a=3或a=4,
故答案为:(1,2]∪{3,4}.
点评 本题考查对数的运算性质,考查数学转化思想方法和分类讨论的数学思想方法,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{{4\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{17}}}{2}$ | D. | $\frac{{2\sqrt{21}}}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a>b,则a-c>b-c | B. | 若a>b,则$\frac{1}{a}<\frac{1}{b}$ | C. | 若a>b,则a2>b2 | D. | 若a>b,则ac2>bc2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 面ABD⊥面ABC | B. | 面ADC⊥面BDC | C. | 面ABC⊥面BDC | D. | 面ADC⊥面ABC |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4} | B. | {3} | C. | {1,3,4} | D. | {3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com