已知抛物线
和点
,过点P的直线
与抛物线交与
两点,设点P刚好为弦
的中点。
(1)求直线
的方程
(2)若过线段
上任一
(不含端点
)作倾斜角为
的直线
交抛物线于
,类比圆中的相交弦定理,给出你的猜想,若成立,给出证明;若不成立,请说明理由。
(3)过P作斜率分别为
的直线
,
交抛物线于
,
交抛物线于
,是否存在
使得(2)中的猜想成立,若存在,给出
满足的条件。若不存在,请说明理由。
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分15分)已知抛物线
上的一点(m,1)到焦点的距离为
.点
是抛物线上任意一点(除去顶点),过点
与
的直线和抛物线交于点
,过点
与的
直线和抛物线交于点
.分别以点
,
为切点的抛物线的切线交于点P′.
(I)求抛物线的方程;
(II)求证:点P′在y轴上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com