精英家教网 > 高中数学 > 题目详情

【题目】下列选项正确的为(

A.已知直线,则的充分不必要条件是

B.命题若数列为等比数列,则数列为等比数列是假命题

C.棱长为正方体中,平面与平面距离为

D.已知为抛物线上任意一点且,若恒成立,则

【答案】ABCD

【解析】

A.分析“”与“”的互相推出情况,由此确定是否为充分不必要条件;

B.分析特殊情况:时,,由此判断命题真假;

C.将面面距离转化为点到面的距离,从而可求出面面距离并判断对错;

D.根据线段长度之间的关系列出不等式,从而可求解出的取值范围.

A.当时,,显然

时,,解得

所以的充分不必要条件是正确;

B.当时,,所以此时为等比数列,

不是等比数列,所以命题是假命题,故正确;

C.如图所示:

由图可知:,所以平面平面

所以平面与平面距离即为到平面的距离,记为

由等体积可知:,所以,故正确;

D.设,因为,所以

所以,所以

时显然符合,当,所以

综上可知:.故正确.

故选:ABCD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,左焦点、右焦点都在轴上,点是椭圆上的动点,的面积的最大值为,在轴上方使成立的点只有一个.

(1)求椭圆的方程;

(2)过点的两直线分别与椭圆交于点和点,且,比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点

1)求椭圆的方程;

2)设点,点轴上,过点的直线交椭圆交于两点.

①若直线的斜率为,且,求点的坐标;

②设直线的斜率分别为,是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在点处的切线与直线平行.

(Ⅰ)求实数的值;

(Ⅱ)设

i)若函数上恒成立,求的最大值;

ii)当时,判断函数有几个零点,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把ABDACD折成互相垂直的两个平面后,某学生得出下列四个结论:

BDAC

②△BAC是等边三角形;

③三棱锥DABC是正三棱锥;

④平面ADC⊥平面ABC.

其中正确的是(

A.①②④B.①②③

C.②③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点与点.

(1)求椭圆的方程;

(2)设直线过定点,且斜率为,若椭圆上存在两点关于直线对称,为坐标原点,求的取值范围及面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知p:函数fx)在R上是增函数,fm2)<fm+2)成立;q:方程1mR)表示双曲线.

1)若p为真命题,求m的取值范围;

2)若pq为真,pq为假,求m的取值范围.

查看答案和解析>>

同步练习册答案