【题目】下列选项正确的为( )
A.已知直线:,:,则的充分不必要条件是
B.命题“若数列为等比数列,则数列为等比数列”是假命题
C.棱长为正方体中,平面与平面距离为
D.已知为抛物线上任意一点且,若恒成立,则
【答案】ABCD
【解析】
A.分析“”与“”的互相推出情况,由此确定是否为充分不必要条件;
B.分析特殊情况:时,,由此判断命题真假;
C.将面面距离转化为点到面的距离,从而可求出面面距离并判断对错;
D.根据线段长度之间的关系列出不等式,从而可求解出的取值范围.
A.当时,,,显然;
当时,,解得,
所以的充分不必要条件是正确;
B.当时,,所以此时为等比数列,
但不是等比数列,所以命题是假命题,故正确;
C.如图所示:
由图可知:,所以平面平面,
所以平面与平面距离即为到平面的距离,记为,
由等体积可知:,所以,故正确;
D.设,因为,所以,
所以且,所以,
当时显然符合,当时,所以,
综上可知:.故正确.
故选:ABCD.
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,左焦点、右焦点都在轴上,点是椭圆上的动点,的面积的最大值为,在轴上方使成立的点只有一个.
(1)求椭圆的方程;
(2)过点的两直线,分别与椭圆交于点,和点,,且,比较与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆:的离心率为,且过点.
(1)求椭圆的方程;
(2)设点,点在轴上,过点的直线交椭圆交于,两点.
①若直线的斜率为,且,求点的坐标;
②设直线,,的斜率分别为,,,是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
①BD⊥AC;
②△BAC是等边三角形;
③三棱锥D-ABC是正三棱锥;
④平面ADC⊥平面ABC.
其中正确的是( )
A.①②④B.①②③
C.②③④D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ax-x2-3ln x,其中a∈R,为常数.
(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点与点.
(1)求椭圆的方程;
(2)设直线过定点,且斜率为,若椭圆上存在,两点关于直线对称,为坐标原点,求的取值范围及面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知p:函数f(x)在R上是增函数,f(m2)<f(m+2)成立;q:方程1(m∈R)表示双曲线.
(1)若p为真命题,求m的取值范围;
(2)若p∨q为真,p∧q为假,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com