【题目】已知椭圆
的中心在原点,左焦点
、右焦点
都在
轴上,点
是椭圆
上的动点,
的面积的最大值为
,在
轴上方使
成立的点
只有一个.
(1)求椭圆
的方程;
(2)过点
的两直线
,
分别与椭圆
交于点
,
和点
,
,且
,比较
与
的大小.
科目:高中数学 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间
与乘客等候人数
之间的关系,经过调查得到如下数据:
间隔时间( | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数( | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数
的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求
关于
的线性回归方程
;
(2)判断(1)中的方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年“十一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(
)分成六段:
,
,
,
,
,
,后得到如图的频率分布直方图.
![]()
(1)求这40辆小型车辆车速的众数和中位数的估计值;
(2)若从车速在
的车辆中任抽取2辆,求车速在
的车辆恰有一辆的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角梯形
中,
,
,
,
为
的中点,如图
将
沿
折到
的位置,使
,点
在
上,且
,如图2.
![]()
求证:
平面
;
求二面角
的正切值;
在线段
上是否存在点
,使
平面
?若存在,确定
的位置,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列选项正确的为( )
A.已知直线
:
,
:
,则
的充分不必要条件是![]()
B.命题“若数列
为等比数列,则数列
为等比数列”是假命题
C.棱长为
正方体
中,平面
与平面
距离为![]()
D.已知
为抛物线
上任意一点且
,若
恒成立,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
的极坐标为
.
(1)求
的直角坐标方程和
的直角坐标;
(2)设
与
交于
,
两点,线段
的中点为
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com