【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
的极坐标为
.
(1)求
的直角坐标方程和
的直角坐标;
(2)设
与
交于
,
两点,线段
的中点为
,求
.
【答案】(1)
,
(2)![]()
【解析】
(1)利用互化公式把曲线C化成直角坐标方程,把点P的极坐标化成直角坐标;
(2)把直线l的参数方程的标准形式代入曲线C的直角坐标方程,根据韦达定理以及参数t的几何意义可得.
(1)由ρ2
得ρ2+ρ2sin2θ=2,将ρ2=x2+y2,y=ρsinθ代入上式并整理得曲线C的直角坐标方程为
y2=1,
设点P的直角坐标为(x,y),因为P的极坐标为(
,
),
所以x=ρcosθ
cos
1,y=ρsinθ
sin
1,
所以点P的直角坐标为(1,1).
(2)将
代入
y2=1,并整理得41t2+110t+25=0,
因为△=1102﹣4×41×25=8000>0,故可设方程的两根为t1,t2,
则t1,t2为A,B对应的参数,且t1+t2
,
依题意,点M对应的参数为
,
所以|PM|=|
|
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,左焦点
、右焦点
都在
轴上,点
是椭圆
上的动点,
的面积的最大值为
,在
轴上方使
成立的点
只有一个.
(1)求椭圆
的方程;
(2)过点
的两直线
,
分别与椭圆
交于点
,
和点
,
,且
,比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ax-
x2-3ln x,其中a∈R,为常数.
(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
与点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
,
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,给出下列命题,其中正确命题的个数为
①当
时,
上单调递增;
②当
时,存在不相等的两个实数
,使
;
③当
时,
有3个零点.
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆
1的左右焦点分别为F1、F2,过焦点F1的直线交椭圆于A、B两点,若△ABF2的内切圆的面积为4,设A、B两点的坐标分别为A(x1,y1),B(x2,y2),则|y1﹣y2|值为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知p:函数f(x)在R上是增函数,f(m2)<f(m+2)成立;q:方程
1(m∈R)表示双曲线.
(1)若p为真命题,求m的取值范围;
(2)若p∨q为真,p∧q为假,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com