【题目】如图,设椭圆1的左右焦点分别为F1、F2,过焦点F1的直线交椭圆于A、B两点,若△ABF2的内切圆的面积为4,设A、B两点的坐标分别为A(x1,y1),B(x2,y2),则|y1﹣y2|值为_____.
【答案】.
【解析】
根据椭圆方程求得、的值,从而得到椭圆的焦点坐标.利用椭圆的定义算出的周长为16,由圆面积公式求得的内切圆半径,从而算出的面积.最后根据的形状,算出其面积,由此建立关系式并解之,即可得出的值.
∵椭圆中,a2=16且b2=4,
∴a=4,b=2,c2,
可得椭圆的焦点分别为F1(﹣2,0)、F2(2,0),
设△ABF2的内切圆半径为r,
∵△ABF2的内切圆面积为S=πr2=4,∴r,
根据椭圆的定义,得|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=16.
∴△ABF2的面积S(|AB|+|AF2|+|BF2|)×r16,
又∵△ABF2的面积S=S△AF1F2+S△BF1F2|y1|×|F1F2||y2|×|F1F2|
(|y1|+|y2|)×|F1F2|=2|y2﹣y1|(A、B在x轴的两侧),
∴2|y2﹣y1|,解之得|y2﹣y1|.
科目:高中数学 来源: 题型:
【题目】在直角梯形中,,,,为的中点,如图将沿折到的位置,使,点在上,且,如图2.
求证:平面;
求二面角的正切值;
在线段上是否存在点,使平面?若存在,确定的位置,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知在矩形中,,,平面,且.
(1)问当实数在什么范围时,边上能存在点,使得?
(2)当边上有且仅有一个点使得时,求二面角的余弦值大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.
(1)求的直角坐标方程和的直角坐标;
(2)设与交于,两点,线段的中点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四个命题:
①“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”
②若事件A与事件B互斥,则P(A∪B)=P(A)+P(B);
③在△ABC中,“A<B”是“sinA<sinB”成立的充要条件;
④若α、β是两个相交平面,直线mα,则在平面β内,一定存在与直线m平行的直线.
上述命题中,其中真命题的序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右顶点分别为A,B,点P在椭圆O上运动,若△PAB面积的最大值为,椭圆O的离心率为.
(1)求椭圆O的标准方程;
(2)过B点作圆E:的两条切线,分别与椭圆O交于两点C,D(异于点B),当r变化时,直线CD是否恒过某定点?若是,求出该定点坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形为菱形, , , , ,平面平面, , 为的中点, 为平面内任一点.
(1)在平面内,过点是否存在直线使?如果不存在,请说明理由,如果存在,请说明作法;
(2)过, , 三点的平面将几何体截去三棱锥,求剩余几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图像向右平移个单位长度,再将所得图像上的每个点的横坐标伸长为原来的2倍,纵坐标不变,所得图像关于直线对称,则的最小正值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com