【题目】如图所示,已知在矩形
中,
,
,
平面
,且
.
![]()
(1)问当实数
在什么范围时,
边上能存在点
,使得
?
(2)当
边上有且仅有一个点
使得
时,求二面角
的余弦值大小.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ax-
x2-3ln x,其中a∈R,为常数.
(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,两焦点与短轴的一个端点的连线构成的三角形面积为
.
(I)求椭圆
的方程;
(II)设与圆
相切的直线
交椭圆
于
,
两点(
为坐标原点),
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
与点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
,
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆
1的左右焦点分别为F1、F2,过焦点F1的直线交椭圆于A、B两点,若△ABF2的内切圆的面积为4,设A、B两点的坐标分别为A(x1,y1),B(x2,y2),则|y1﹣y2|值为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,点
在椭圆
上,椭圆
的离心率是
.
(1)求椭圆
的标准方程;
(2)设点
为椭圆长轴的左端点,
为椭圆上异于椭圆
长轴端点的两点,记直线
斜率分别为
,若
,请判断直线
是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com