【题目】已知函数,的导函数为.
(1)试讨论函数的零点个数;
(2)若对任意的,关于的不等式恒成立,求实数的取值范围.
【答案】(1)详见解析;(2).
【解析】
(1)先求函数的定义域,然后求函数的导数,对分类讨论,将的零点问题,转化为直线与函数图象的交点个数来求解出来.(2)构造函数,将原问题转化为对恒成立,先利用确定的一个范围,然后利用的二阶导数验证在这个范围内,的最大值不大于零,由此求得的取值范围.
解:(1)由题意得的定义域为,.
(i)当时,,此时没有零点;
(ii)当时,,
的零点个数等于直线与函数图象的交点个数,可知直线与函数图象的相切点,此时切线的斜率为.
①当,即时,两个图象没有交点,即函数没有零点;
②当,即时,两个图象有两个交点,即函数有两个零点;
③当,即时两个图象有一个交点,即函数有一个零点;
④当,即时,两个图象有一个交点,即函数有一个零点.
综上,当时,函数没有零点;
当或时,有一个零点;
当时,有两个零点.
(2)设 ,
要使原不等式恒成立,则只要对恒成立,
所以.
令,则.
由于“对恒成立”的一个必要条件是,即.
当时,,,
所以在上单调递减.
所以,,从而在上单调递减,则,,
所以实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是__________
①存在点,使得平面平面;
②存在点,使得平面平面;
③的面积可能等于;
④若分别是在平面与平面的正投影的面积,则存在点,使得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线上的动点到点的距离减去到直线的距离等于1.
(1)求曲线的方程;
(2)若直线 与曲线交于,两点,求证:直线与直线的倾斜角互补.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.
(1)试计算出图案中球与圆柱的体积比;
(2)假设球半径.试计算出图案中圆锥的体积和表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,左焦点、右焦点都在轴上,点是椭圆上的动点,的面积的最大值为,在轴上方使成立的点只有一个.
(1)求椭圆的方程;
(2)过点的两直线,分别与椭圆交于点,和点,,且,比较与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ax-x2-3ln x,其中a∈R,为常数.
(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com