精英家教网 > 高中数学 > 题目详情

已知函数

②f(x)=5cosx;

③f(x)=5ex

④f(x)=5lnx,其中对于f(x)定义域内的任意一个自变量x1,都存在唯一的自变量x2,使成立的函数为

[  ]
A.

①③④

B.

②④

C.

①③

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有意义.对于给定的正数k,已知函数fk(x)=
f(x),f(x)≤k
k,f(x)>k
,取函数f(x)=3-x-e-x.若对任意的x∈(-∞,+∞),恒有f1(x)=f(x),则k的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数(x-1)f(
x+1x-1
)+f(x)=x
,其中x≠1,求函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-c
x+1
,其中c为常数,且函数f(x)图象过原点.
(1)求c的值;
(2)证明函数f(x)在[0,2]上是单调递增函数;
(3)已知函数g(x)=f(ex)-
1
3
,求函数g(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数h(x)=
f(x)
g(x)
,x∈(0,3],g(x)≠0
,对任意x∈(0,3],f(x)g′(x)>f′(x)g(x)恒成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)已知函数,y=f(x)=-x3+ax2+b(a,b∈R)
(Ⅰ)要使f(x)在(0,1)上单调递增,求a的取值范围;
(Ⅱ)当a>0时,若函数f(x)的极小值和极大值分别为1、
31
27
,试求函数y=f(x)的解析式;
(Ⅲ)若x∈[0,1]时,y=f(x)图象上任意一点处的切线倾斜角为θ,当0≤θ≤
π
4
.时,求a的取值范围.

查看答案和解析>>

同步练习册答案