精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x-c
x+1
,其中c为常数,且函数f(x)图象过原点.
(1)求c的值;
(2)证明函数f(x)在[0,2]上是单调递增函数;
(3)已知函数g(x)=f(ex)-
1
3
,求函数g(x)的零点.
分析:(1)根据函数f(x)图象过原点,即f(0)=0,解得 c的值.
(2)设0≤x1<x2≤2,化简f(x1)-f(x2) 的解析式为-
x2-x1
(x1+1)(x2+1)
<0,得f(x1)<f(x2 ),从而证明函数f(x)在[0,2]上是单调递增函数.
(3)令函数g(x)=f(ex)-
1
3
=0,求出x的值,即为函数的零点.
解答:解:(1)∵函数f(x)图象过原点,∴f(0)=0,解得 c=0,故函数f(x)=
x
x+1

(2)证明:设0≤x1<x2≤2,
则f(x1)-f(x2)=
x1
x1+1
-
x2
x2+1
=
x1(x2+1)-x2(x1+1)
(x1+1)(x2+1)
=-
x2-x1
(x1+1)(x2+1)

由0≤x1<x2≤2 可得,x2-x1>0,x1+1>0,x2+1>0,故有-
x2-x1
(x1+1)(x2+1)
<0,
则f(x1)-f(x2)<0,f(x1)<f(x2 ),
故函数f(x)在[0,2]上是单调递增函数.
(3)令g(x)=f(ex)-
1
3
=
ex
ex+1
-
1
3
=0

ex=
1
2
,即x=ln
1
2
=-ln2,
即函数g(x)的零点为 x=-ln2.
点评:本题主要考查函数的单调性的判断和证明,函数零点的定义、求函数零点的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案