精英家教网 > 高中数学 > 题目详情
若平面向量满足,则的取值范围为   
【答案】分析:利用 ≤4||+,及 -4||,求出||的取值范围.
解答:解:设 的夹角为θ,∵=2•2||cosθ+≤4||+
∴||≥2 或||≤-6(舍去).
又∵=2•2||cosθ+-4||,∴6≥||≥-2.
综上,6≥||≥2,
故答案为:[2,6].
点评:本题考查两个向量的数量积的定义,数量积公式的应用,利用 1≥cosθ≥-1是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖南省高三上学期第三次月考理科数学试卷(解析版) 题型:填空题

若平面向量满足:;则的最小值是      

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省辽南协作体高三上学期期中考试理科数学 题型:选择题

若平面向量满足,则向量的夹角等于

A.          B.           C.         D.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省海珠区高三第一次综合测试数学理卷 题型:选择题

若平面向量满足,则

A.       B.      C.        D.

 

查看答案和解析>>

科目:高中数学 来源:2011年浙江省杭州市萧山区高考数学模拟试卷11(理科)(解析版) 题型:解答题

若平面向量满足,则的取值范围为   

查看答案和解析>>

同步练习册答案