【题目】在直角坐标系
中,射线
的方程为
,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的方程为
.一只小虫从点
沿射线
向上以
单位/min的速度爬行
(1)以小虫爬行时间
为参数,写出射线
的参数方程;
(2)求小虫在曲线
内部逗留的时间.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长与焦距分别为方程
的两个实数根.
(1)求椭圆的标准方程;
(2)若直线
过点
且与椭圆相交于
,
两点,
是椭圆的左焦点,当
面积最大时,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,AC=
BC,AB=2BC,D为线段AB上一点,且AD=3DB,PD⊥平面ABC,PA与平面ABC所成的角为45°.
![]()
(1)求证:平面PAB⊥平面PCD;
(2)求二面角P﹣AC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校为了解高二学生每天自主学习中国古典文学的时间,随机抽取了高二男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如下表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
参考公式:
,其中![]()
参考数据:
| 0.500 | 0.400 | 0.250 | 0.050 | 0.025 | 0.010 |
| 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
(1)根据上表数据判断能否有60%的把握认为“古文迷”与性别有关?
(2)现从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有下列四个结论,其中所有正确结论的编号是___________.
①若
,则
的最大值为
;
②若
,
,
是等差数列
的前
项,则
;
③“
”的一个必要不充分条件是“
”;
④“
,
”的否定为“
,
”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,的焦点为
,过点
的直线
的斜率为
,与抛物线
交于
,
两点,抛物线在点
,
处的切线分别为
,
,两条切线的交点为
.
(1)证明:
;
(2)若
的外接圆
与抛物线
有四个不同的交点,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点与坐标原点
重合,极轴与
轴非负半轴重合,
是曲线
上任一点
满足
,设点
的轨迹为
.
(1)求曲线
的平面直角坐标方程;
(2)将曲线
向右平移
个单位后得到曲线
,设曲线
与直线
(
为参数)相交于
、
两点,记点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线
的极坐标方程为
,曲线
的极坐标方程为
,以极点
为坐标原点,极轴为
的正半轴建立平面直角坐标系
.
(1)求
和
的参数方程;
(2)已知射线
,将
逆时针旋转
得到
,且
与
交于
两点,
与
交于
两点,求
取得最大值时点
的极坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com