精英家教网 > 高中数学 > 题目详情
在抛物线y2=4x上恒有两点关于直线l:y=kx+3对称,求k的取值范围.

解析:设B、C关于直线y=kx+3对称,直线BC方程为x=-ky+m,代入y2=4x,得y2+4ky-4m=0,设B(x1,y1)、C(x2,y2),BC中点M(x0,y0),则y0==-2k,x0=2k2+m,∵点M(x0,y0)在直线l上,

∴-2k=k(2k2+m)+3.

∴m=-.

∵M(x0,y0) 在抛物线y2=4x内部,则y02<4x0,把m代入化简得<0,即<0,解得-1<k<0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在抛物线y2=4x上求一点P,使得点P到直线l:x-y+4=0的距离最短,并求最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

正三角形的一个顶点位于原点,另外两个顶点在抛物线y2=4x上,则这个正三角形的边长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A的坐标为(3,1),点P在抛物线y2=4x上移动,F为抛物线的焦点,则|PF|+|PA|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在抛物线y2=4x上运动,F为抛物线的焦点,点M的坐标为(3,2),当PM+PF取最小值时点P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点Q在抛物线y2=4x上,点P(a,0)(满足|PQ|≥|a|恒成立,则a的取值范围是(  )
A、(0,2)B、[0,2]C、(-∞,2]D、(-∞,0)

查看答案和解析>>

同步练习册答案