精英家教网 > 高中数学 > 题目详情

【题目】如图是一个二次函数y=f(x)的图象

(1)写出这个二次函数的零点

(2)求这个二次函数的解析式

(3)当实数k在何范围内变化时,函数g(x)=f(x)-kx在区间[-2,2]上是单调函数?

【答案】(1)零点是-3,1(2)y=-x2-2x+3 (3)k≤-6k≥2时,g(x)在[-2,2]上是单调函数

【解析】

(1)根据图象找函数图象与横轴交点的横坐标即可求得函数的零点;(2)由顶点是可设函数为再代入即可求得函数的解析式;(3)先化简函数 易知图象开口向下对称轴为,因为是单调函数利用对称轴在区间的两侧列不等式求解即可.

(1)由图可知,此二次函数的零点是-3,1

(2)∵顶点是(-1,4)

∴设函数为:y=a(x+1)2+4,

(-3,0)在图象上

a=-1

∴函数为y=-x2-2x+3

(3)g(x)=-x2-2x+3-kx=-x2-(k+2)x+3

∴图象开口向下,对称轴为

,即k≥2时,g(x)在[-2,2]上是减函数

,即k≤-6时,g(x)在[-2,2]上是增函数

综上所述k≤-6k≥2时,g(x)在[-2,2]上是单调函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是过点的动直线与椭圆相交于两点当直线轴平行时直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程

(Ⅱ)在轴上是否存在异于点的定点使得直线变化时总有若存在求出点的坐标若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥A-BCDE,底面BCDE为直角梯形,CD⊥平面ABC,侧面ABCD是等腰直角三角形,EBC=ABC=90°,BC=CD=2BE,M是棱AD的中点

(1)求异面直线MEAB所成角的大小;

()证明:平面AED⊥平面ACD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆 的顶点, 为椭圆的左焦点且椭圆经过点.

(1)求椭圆的方程;

(2)过椭圆的右顶点作斜率为)的直线交椭圆于另一点,连结并延长交椭圆于点,当的面积取得最大值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线a、b和平面,下列说法中正确的有______

,则

,则

,则

若直线,直线,则

若直线a在平面外,则

直线a平行于平面内的无数条直线,则

若直线,那么直线a就平行于平面内的无数条直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2ax2+bx+1(e为自然对数的底数).
(1)若 ,求函数F(x)=f(x)ex的单调区间;
(2)若b=e﹣1﹣2a,方程f(x)=ex在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C的极坐标方程为ρ=6cosθ+2sinθ,直线l的参数方程为 (t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设点Q(1,2),直线l与曲线C交于A,B两点,求|QA||QB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且仅有两个整数解,则实数a的取值范围为(
A.(﹣ ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

同步练习册答案