精英家教网 > 高中数学 > 题目详情
已知数列{an}满足递推关系式:an=
4an-1-2
an-1+1
(n≥2,n∈N),首项为a1

(1)若a1>a2,求a1的取值范围;
(2)记bn=
an-2
an-1
(n∈N*),1<a1<2,求证:数列{bn}
是等比数列;
(3)若an>an+1(n∈N*)恒成立,求a1的取值范围.
分析:(1)根据递推关系式先求出a2,再由a1>a2,解不等式得到a1的取值范围;
(2)由bn与an的关系,an与an-1的关系,求出bn与bn-1的关系,即得到公比,从而得证;
(3)结合(2)中数列{bn}通项公式,代入an>an+1中得到b1和n的关系,先求出b1的范围,再求出a1的取值范围.
解答:解:(1)∵a2=
4a1-2
a1+1
则由a2a1
4a1-2
a1+1
-a1<0
a
2
1
-3a1+2
a1+1
>0则a1的范围是:a1>2或-1<a1<1
.…(4分)
(2)由bn=
an-2
an-1
=1-
1
an-1

bn=
4an-1-2
an-1+1
-2
4an+1-2
an-1+1
-1
=
2an-1-4
3an-1+3
=
2
3
an-1-2
an-1-1
=
2
3
bn-1
bn=(
2
3
)n-1b1
其中b1=
a1-2
a1-1
≠0,故{bn}是等比数列.…(9分)

(3)在a1=2时,数列{an}是常数列,an=2不符合题意于是a1≠2,从而b1=
a1-2
a1-1
≠0

由(2)可知bn=(
2
3
)n-1b1

bn=
an-2
an-1
an=
1
1-bn
+1

于是an+1-an=
1
1-bn+1
-
1
1-bn
=
bn+1-bn
(1-bn+1)(1-bn)

=
(
2
3
)
n
b1-(
2
3
)
n-1
b1
[1-(
2
3
)
n
b1][1-(
2
3
)
n-1
b1]
=
(
2
3
)
n-1
b1(
2
3
-1)
[1-(
2
3
)
n
b1][1-(
2
3
)
n-1
b1]
=
-
1
3
(
2
3
)
n-1
b1
[1-(
2
3
)
n
b1][1-(
2
3
)
n-1
b1]
<0
b1[b1-(
3
2
)n][b1-(
3
2
)n-1]>0恒成立.
从而0<b1<(
3
2
)n-1b1>(
3
2
)n恒成立.
因此0<b1<1,即0<
a1-2
a1-1
<1.

则a1的范围是:a1>2.…(13分)
点评:此题考查分式不等式解法,数列的递推关系,及利用求等比来证明等比数列的证明方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案