精英家教网 > 高中数学 > 题目详情
设有-4×4正方形网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上;假设每次投掷都落在最大的正方形内或与最大的正方形有公共点.求:
(1)硬币落下后完全在最大的正方形内的概率;
(2)硬币落下后与网格线没有公共点的概率.
考虑圆心的运动情况.
(1)因为每次投掷都落在最大的正方形内或与最大的正方形有公共点,所以圆心的最大限度为原正方形向外再扩张1个小圆半径的区域,且四角为四分之圆弧;此时总面积为:
16×16+4×16×1+π×12=320+π;
完全落在最大的正方形内时,圆心的位置在14为边长的正方形内,
其面积为:14×14=196;
∴硬币落下后完全在最大的正方形内的概率为:P=
196
320+π

(2)每个小正方形内与网格线没有公共点的部分是正中心的边长为2的正方形的内部,一共有16个小正方形,总面积有16×22=64;
∴硬币落下后与网格线没有公共点的概率为P=
64
320+π
.即硬币落下后完全在最大的正方形内的概率为P=
196
320+π

硬币落下后与网格线没有公共点的概率为P=
64
320+π

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某甲有一个放有3个红球、2个白球、1个黄球共6个球的箱子;某乙也有一个放有3个红球、2个白球、1个黄球共6个球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一个球,直到取到红球为止,求甲取球次数的数学期望;
(Ⅱ)若甲、乙两人各从自己的箱子里任取一球比颜色,规定同色时为甲胜,异色时为乙胜,这个游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某次会议有6名代表参加,A、B两名代表来自甲单位;C、D两名代表来自乙单位;E、F两名代表来自丙单位;现随机选出两名代表发言.求:
(1)代表A被选中的概率;
(2)选出的两名代表中,恰有1名来自乙单位或2名都来自丙单位的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中有3个白球,2个红球共5个球.
(1)若有放回地依次取出两个球,求取得的两个球中至少有一个是白球的概率.
(2)若摸到白球时得1分,摸到红球时得2分,求任意取出3个球所得总分为5的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在一次语文测试中,有一道把四本名著与它们的作者连线的题目(每本书连且只能连一位作者),每连对一个得3分,连错不得分,则某考生该题得分为3分的概率为(  )
A.
3
8
B.
1
3
C.
1
6
D.
1
12

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱锥P-ABCD的四条侧棱,底面四条边及两条对角线共10条线段,现有一只蚂蚁沿着这10条线段从一个顶点爬行到另一个顶点,规定:(1)从一个顶点爬行到另一个顶点视为一次爬行;(2)从任一顶点向另4个顶点爬行是等可能的(若蚂蚁爬行在底面对角线上时仍按原方向直行).则蚂蚁从顶点P开始爬行4次后恰好回到顶点P的概率是(  )
A.
1
16
B.
9
16
C.
9
64
D.
13
64

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为
1
5

(Ⅰ)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;
(Ⅱ)要使敌机一旦进入这个区域内有90%以上的概率被击中,至少需要布置几门这类高射炮?(参考数据lg2=0.301,lg3=0.4771)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球.事件“甲分得白球”与事件“乙分得白球”是(  )
A.对立事件B.不可能事件
C.互斥事件D.必然事件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从集合中随机取出一个数,设事件为“取出的数是偶数”, 事件为“取出的数是奇数”,则事件
A.是互斥且是对立事件B.是互斥且不对立事件
C.不是互斥事件D.不是对立事件

查看答案和解析>>

同步练习册答案