精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均为正整数,且满足an+1=an2-2nan+2(n∈N*),又a5=11.
(1)求a1,a2,a3,a4的值,并由此推测出{an}的通项公式(不要求证明);
(2)设bn=11-an,Sn=b1+b2+…+bn,Sn′=|b1|+|b2|+…+|bn|,求
lim
n→∞
Sn
Sn
的值.
(1)由a5=11,得11=a42-8a4+2,即a42-8a4-9=0.解得a4=9或a4=-1(舍).
由a4=9,得a32-6a3-7=0.
解得a3=7或a3=-1(舍).
同理可求出a2=5,a1=3.
由此推测an的一个通项公式an=2n+1(n∈N*).
(2)bn=11-an=10-2n(n∈N*),可知数列{bn}是等差数列.
Sn=
n(b1+bn)
2
=
n(8+10-2n)
2
=-n2+9n.
当n≤5时,Sn′=Sn=-n2+9n;
当n>5时,Sn′=-Sn+2S5=-Sn+40=n2-9n+40.
当n≤5时,
Sn
Sn
=1;
当n>5时,
Sn
Sn
=
-n2+9n
n2-9n+40

lim
n→∞
Sn
Sn
=
lim
n→∞
-n2+9n
n2-9n+40
=-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2.已知数列{an}的通项公式是an=
2n
3n+1
(n∈N*,n≤8)
,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中数学 来源:江西省赣县中学2011届高三适应性考试数学理科试题 题型:013

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

例2.已知数列{an}的通项公式是数学公式,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)数学公式(2)数学公式

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.1 数列定义与通项(解析版) 题型:解答题

例2.已知数列{an}的通项公式是,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步练习册答案