(本小题满分14分)如图,在正方体中,、分别
为棱、的中点.(1)求证:∥平面;
(2)求证:平面⊥平面;
(3)如果,一个动点从点出发在正方体的
表面上依次经过棱、、、、上的点,
最终又回到点,指出整个路线长度的最小值并说明理由.
(Ⅰ) 见解析 (Ⅱ) 见解析 (Ⅲ)
(1)证明:连结.
在正方体中,对角线.又 E、F为棱AD、AB的中点,
. .……2分又B1D1平面,平面,
EF∥平面CB1D1. ……4分
(2)证明: 在正方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1,
AA1⊥B1D1.又在正方形A1B1C1D1中,A1C1⊥B1D1, B1D1⊥平面CAA1C1.……6分
又 B1D1平面CB1D1,平面CAA1C1⊥平面CB1D1.……8分
(3)最小值为 . …10分
如图,将正方体六个面展开成平面图形, ……12分
从图中F到F,两点之间线段最短,而且依次经过棱BB1、B1C1、C1D1、D1D、DA上的中点,所求的最小值为 .…14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com