精英家教网 > 高中数学 > 题目详情
(2012•重庆)已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.
分析:(Ⅰ)由题设f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c-16,可得
f′(2)=0
f(2)=c-16
解此方程组即可得出a,b的值;
(II)结合(I)判断出f(x)有极大值,利用f(x)有极大值28建立方程求出参数c的值,进而可求出函数f(x)在[-3,3]上的极小值与两个端点的函数值,比较这此值得出f(x)在[-3,3]上的最小值即可.
解答:解:(Ⅰ)由题f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c-16
f′(2)=0
f(2)=c-16
,即
12a+b=0
8a+2b+c=c-16
,化简得
12a+b=0
4a+b=-8

解得a=1,b=-12
(II)由(I)知f(x)=x3-12x+c,f′(x)=3x2-12=3(x+2)(x-2)
令f′(x)=3x2-12=3(x+2)(x-2)=0,解得x1=-2,x2=2
当x∈(-∞,-2)时,f′(x)>0,故f(x)在∈(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数;
由此可知f(x)在x1=-2处取得极大值f(-2)=16+c,f(x)在x2=2处取得极小值f(2)=c-16,
由题设条件知16+c=28得,c=12
此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=-16+c=-4
因此f(x)在[-3,3]上的最小值f(2)=-4
点评:本题考查利用导数求闭区间上函数的最值及利用导数求函数的极值,解第一小题的关键是理解“函数在点x=2处取得极值c-16”,将其转化为x=2处的导数为0与函数值为c-16两个等量关系,第二小时解题的关键是根据极大值为28建立方程求出参数c的值.本题考查了转化的思想及方程的思想,计算量大,有一定难度,易因为不能正确转化导致无法下手求解及计算错误导致解题失败,做题时要严谨认真,严防出现在失误.此类题是高考的常考题,平时学习时要足够重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•重庆)已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(Ⅰ)求{an}的通项公式
(Ⅱ)记{an}的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)已知a=log23+log2
3
,b=log29-log2
3
,c=log32则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

 [2012·重庆卷] 已知在直三棱柱ABCA1B1C1中,AB=4,ACBC=3,DAB的中点.

(1)求异面直线CC1AB的距离;

(2)若AB1A1C,求二面角A1CDB1的平面角的余弦值.

图1-3

查看答案和解析>>

同步练习册答案