精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足
AB
BM
+
2
|
AM
|
=0,求动点M的轨迹Q;
(2) F1,F2是轨迹Q的左、右焦点,过F1作直线l(不与x轴重合),l与轨迹Q相交于C,D,并与圆x2+y2=3相交于E,F.当
F2E
F2F
,且λ∈[
2
3
,1]时,求△F2CD的面积S的取值范围.
分析:(1)由题意直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,利用导数的几何含义得到直线的方程,进而求出点A的坐标,利用动点M满足
AB
BM
+
2
|
AM
|
=0,利用求动点轨迹的直接法即可求解;
(2)由题意设出直线l的方程,把它与椭圆及已知的圆的方程方程进行联立,利用根与系数的关系整体代换得到△F2CD的面积用t表示的函数式子,有已知的λ的范围得到t的范围,利用求函数值域的方法得到三角形的面积的取值范围.
解答:解:(1)由x2=4y得y=
1
4
x2,∴y′=
1
2
x
∴直线l的斜率为y′|2=1,
故l的方程为y=x-1,∴点A坐标为(1,0),
设M(x,y)则
AB
=(1,0),
BM
=(x-2,y),
AM
=(x-1,y),
AB
BM
+
2
|
AM
|=0得
(x-2)+y•0+
2
(x-1)2+y2
=0
整理,得
x2
2
+y2=1

∴动点M的轨迹Q为以原点为中心,焦点在x轴上,长轴长为2
2

短轴长为2的椭圆.

(2)设l方程为x=ty-1,E(x1,y1),F(x2,y2
x=ty-1
x2+y2=3
得(t2+1)y2-2ty-2=0
F2E
F2F
=(x1-1,y1)•(x2-1,y2)

=(ty1-2)(ty2-2)+y1y2
=(t2+1)y1y2-2t(y1+y2)+4
=
4
t2+1
-2

F2E
F2F
∈[
2
3
,1]
得t2[
1
3
1
2
]

x=ty-1
x2
2
+y2=3
得(t2+2)y2-2ty-1=0设C(x3,y3),D(x4,y4).
SF1CD=
1
2
|F1F2|y3-y4|=|y3-y4|=
8(t2+1)
(t2+2)2

设m=t2+1,则S=
8m
(m+1)2
=
8
m+
1
m
+2
,m∈[
4
3
3
2
]

S关于m在[
4
3
3
2
]
上是减函数.所以S∈[
4
5
3
4
7
6
].
点评:此题考查了导数的几何含义,双曲线的性质,直线方程与椭圆和圆的方程的联立及根与系数的关系,还考查了有定义域求函数值域的方法,及整体代换的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线y=
1
4
x2
相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足
AB
BM
+
2
|
AM
|=0
,求动点M的轨迹C的方程;
(2)若过点B的直线l'(斜率不等于零)与(1)中的轨迹C交于不同
的两点E、F(E在B、F之间),且
BE
BF
,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足
AB
BM
+
2
|
AM
|=0
,求点M的轨迹C;
(Ⅱ)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线l与抛物线y2=x相交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,若y1y2=-1,
(1)求证:OA⊥OB;
(2)M点的坐标为(1,0),求△AOB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省兖州市高三第三次模拟考试理科数学卷 题型:解答题

如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).

(I) 若动点M满足,求点M的轨迹C;

(II)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围

 

查看答案和解析>>

同步练习册答案