精英家教网 > 高中数学 > 题目详情

(08年陕西卷)(本小题满分12分)

已知抛物线,直线两点,是线段的中点,过轴的垂线交于点

(Ⅰ)证明:抛物线在点处的切线与平行;

(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.

解法一:(Ⅰ)如图,

,把代入

由韦达定理得

点的坐标为

设抛物线在点处的切线的方程为

代入上式得

直线与抛物线相切,

(Ⅱ)假设存在实数,使,则,又的中点,

由(Ⅰ)知

轴,

      

,解得

即存在,使

解法二:(Ⅰ)如图,设,把代入

.由韦达定理得

点的坐标为

抛物线在点处的切线的斜率为

(Ⅱ)假设存在实数,使

由(Ⅰ)知,则

,解得

即存在,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

08年陕西卷理)(本小题满分12分)

三棱锥被平行于底面的平面所截得的几何体如图所示,截面为平面

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年陕西卷理)(本小题满分12分)

某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.

(Ⅰ)求该射手恰好射击两次的概率;

(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年陕西卷理)(本小题满分12分)已知函数

(Ⅰ)求函数的最小正周期及最值;

(Ⅱ)令,判断函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年陕西卷文)本小题满分14分)

设函数其中实数

(Ⅰ)若,求函数的单调区间;

(Ⅱ)当函数的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;

(Ⅲ)若在区间内均为增函数,求的取值范围.

查看答案和解析>>

同步练习册答案