精英家教网 > 高中数学 > 题目详情
某次象棋比赛的决赛在甲乙两名棋手之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分;比赛共进行五局,积分有超过5分者比赛结束,否则继续进行.根据以往经验,每局甲赢的概率为
1
2
,乙赢的概率为
1
3
,且每局比赛输赢互不受影响.若甲第n局赢、平、输的得分分别记为an=2、an=1、an=0n∈N*,1≤n≤5,令Sn=a1+a2+…+an
(Ⅰ)求S3=5的概率;
(Ⅱ)若随机变量ξ满足Sξ=7(ξ表示局数),求ξ的分布列和数学期望.
(I)S3=5,即前3局甲2胜1平.
由已知甲赢的概率为
1
2
,平的概率为
1
6
,输的概率为
1
3

得S3=5得概率为
C23
(
1
2
)2?
1
6
=
1
8

(II)Sξ=7时,ξ=4,5,且最后一局甲赢,
P(ξ=4)=
C13
(
1
6
)(
1
2
)2(
1
2
)=
1
16

P(ξ=5)=
C14
(
1
2
)(
1
6
)3(
1
2
)+
C13
(
1
3
)
C13
(
1
6
)(
1
2
)2(
1
2
)=
1
216
+
1
12
=
19
216

ξ的分布列为

精英家教网

Eξ=4×
1
16
+5×
1
216
=
149
216
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某次象棋比赛的决赛在甲乙两名棋手之间进行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往经验,每局甲赢的概率为
1
2
,乙赢的概率为
1
3
,且每局比赛输赢互不影响.若甲第n局的得分记为an,令Sn=a1+a2+…+an
(Ⅰ)求S3=5的概率;
(Ⅱ)若ξ=S2,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•潍坊二模)某次象棋比赛的决赛在甲乙两名棋手之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分;比赛共进行五局,积分有超过5分者比赛结束,否则继续进行.根据以往经验,每局甲赢的概率为
1
2
,乙赢的概率为
1
3
,且每局比赛输赢互不受影响.若甲第n局赢、平、输的得分分别记为an=2、an=1、an=0n∈N*,1≤n≤5,令Sn=a1+a2+…+an
(Ⅰ)求S3=5的概率;
(Ⅱ)若随机变量ξ满足Sξ=7(ξ表示局数),求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某次象棋比赛的决赛在甲乙两名棋手之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分, 根据以往经验,每局甲赢的概率为,乙赢的概率为,且每局比赛输赢互不影响.若甲第局的得分记为,令

(I)求的概率;

(Ⅱ)若规定:当其中一方的积分达到或超过4分时,比赛结束,否则,继续进行。设随机变量表示此次比赛共进行的局数,求的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

某次象棋比赛的决赛在甲乙两名棋手之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分, 根据以往经验,每局甲赢的概率为,乙赢的概率为,且每局比赛输赢互不影响.若甲第局的得分记为,令

(I)求的概率;

(Ⅱ)若规定:当其中一方的积分达到或超过4分时,比赛结束,否则,继续进行。设随机变量表示此次比赛共进行的局数,求的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

某次象棋比赛的决赛在甲乙两名棋手之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分;比赛共进行五局,积分有超过5分者比赛结束,否则继续进行. 根据以往经验,每局甲赢的概率为,乙赢的概率为,且每局比赛输赢互不受影响.  若甲第n局赢、平、输的得分分别记为       .

(Ⅰ)求的概率;

(Ⅱ)若随机变量满足表示局数),求的分布列和数学期望.

查看答案和解析>>

同步练习册答案