精英家教网 > 高中数学 > 题目详情
如图,四棱柱中, 上的点且边上的高.
(Ⅰ)求证:平面
(Ⅱ)求证:
(Ⅲ)线段上是否存在点,使平面?说明理由.
(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)详见解析

试题分析:(Ⅰ)利用结合直线与平面平行的判定定理证明即可;(Ⅱ)利用已知条件先证明平面,进而得到;(Ⅲ)取的中点,连接,可以先证平面,再利用平行四边形平移法证明四边形为平行四边形,由,进而得到平面,从而确定点的位置.
试题解析:(Ⅰ)证明:,且平面PCD,平面PCD,所以平面PDC
2分
(Ⅱ)证明:因为AB平面PAD,且PH平面PAD , 所以
又PH为中AD边上的高,所以
所以平面
平面所以            7分
(Ⅲ)解:线段上存在点,使平面
理由如下:如图,分别取的中点G、E



所以
所以为平行四边形,故
因为AB平面PAD,所以
因此,
因为的中点,且,所以,因此
,所以平面
14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱的底面是直角三角形, ,侧棱与底面所成角为,点在底面上的射影落在上.

(1)求证:平面
(2)若,且当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面,四边形中,.
(Ⅰ)求证:平面平面
(Ⅱ)设
(ⅰ) 若直线与平面所成的角为,求线段的长;
(ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.
(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;
(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体棱长的最大值为(     )
A.2B.3 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,

(1)点的中点,点的中点,将分别沿折起,使两点重合于点。求证:
(2)当时,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,菱形的边长为6,,.将菱形沿对角线折起,得到三棱锥 ,点是棱的中点,.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面为正方形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,

(I) 求证:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.

查看答案和解析>>

同步练习册答案